Ferroelectric translational antiphase boundaries in nonpolar materials

نویسندگان

  • Xian-Kui Wei
  • Alexander K. Tagantsev
  • Alexander Kvasov
  • Krystian Roleder
  • Chun-Lin Jia
  • Nava Setter
چکیده

Ferroelectric materials are heavily used in electro-mechanics and electronics. Inside the ferroelectric, domain walls separate regions in which the spontaneous polarization is differently oriented. Properties of ferroelectric domain walls can differ from those of the domains themselves, leading to new exploitable phenomena. Even more exciting is that a non-ferroelectric material may have domain boundaries that are ferroelectric. Many materials possess translational antiphase boundaries. Such boundaries could be interesting entities to carry information if they were ferroelectric. Here we show first that antiphase boundaries in antiferroelectrics may possess ferroelectricity. We then identify these boundaries in the classical antiferroelectric lead zirconate and evidence their polarity by electron microscopy using negative spherical-aberration imaging technique. Ab initio modelling confirms the polar bi-stable nature of the walls. Ferroelectric antiphase boundaries could make high-density non-volatile memory; in comparison with the magnetic domain wall memory, they do not require current for operation and are an order of magnitude thinner.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Domain topology and domain switching kinetics in a hybrid improper ferroelectric

Charged polar interfaces such as charged ferroelectric walls or heterostructured interfaces of ZnO/(Zn,Mg)O and LaAlO3/SrTiO3, across which the normal component of electric polarization changes suddenly, can host large two-dimensional conduction. Charged ferroelectric walls, which are energetically unfavourable in general, were found to be mysteriously abundant in hybrid improper ferroelectric ...

متن کامل

Thickness driven stabilization of saw-tooth–like domains upon phase transitions in ferroelectric thin films with depletion charges

Related Articles Correlation between growth dynamics and dielectric properties of epitaxial BaTiO3 films Appl. Phys. Lett. 100, 102904 (2012) Strong red emission in lead-free ferroelectric Pr3+-doped Na0.5Bi0.5TiO3 thin films without the need of charge compensation J. Appl. Phys. 110, 034102 (2011) Influence of thermal stresses on the electrocaloric properties of ferroelectric films Appl. Phys....

متن کامل

Low-energy structural dynamics of ferroelectric domain walls in hexagonal rare-earth manganites

Domain walls (DWs) in ferroic materials, across which the order parameter abruptly changes its orientation, can host emergent properties that are absent in the bulk domains. Using a broadband (106 to 1010 Hz) scanning impedance microscope, we show that the electrical response of the interlocked antiphase boundaries and ferroelectric DWs in hexagonal rare-earth manganites (h-RMnO3) is dominated ...

متن کامل

The Effect of Interfacial Contamination on Antiphase Domain Boundary Formation in GaAs on Si(100)

The suppression of defects such as antiphase domain boundaries (APBs) is a key challenge in the effort to integrate III-V compound semiconductor devices on Si. The formation of APBs naturally arises from growing a polar material on a nonpolar substrate. Surface contamination present on the substrate prior to growth can also disrupt the ordering of atoms in an epitaxial layer and lead to extende...

متن کامل

Anomalous magnetization reversal due to proximity effect of antiphase boundaries

Here we report anomalous double switching hysteresis loop and high coercivity (∼0.1 T) in Fe3O4(110) thin films. Our analytical model based on spin chains confined within small antiphase boundary domains (APBDs) suggests a significant proximity effect of antiferromagnetic antiphase boundaries (APBs). Furthermore, the calculated domain size (D) follows the well-known scaling relation D = C√t . T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014